A SCIENCE AND INNOVATION STRATEGY FOR THE BUSINESS COMMUNITY:
An end user perspective

October 2014

Anne Richards
Aberdeen Asset Management

Today’s teenagers are bilingual

I don’t know, love you, talk to you later.

OK, I will ask your sister.
But thankfully age appropriate translation services are provided!

We work in a global economy and must adapt to stay competitive

The digital revolution and globalisation
- We are using ever more technology in both business and our daily lives
- It is estimated that by 2020, 30 billion devices will be connected to the internet against a population estimate of 7.7 billion
- Google now processes 3.5 billion searches per day, demonstrating the potential for businesses to grow through ecommerce and digital marketing
- Technological advances mean businesses of any size or location can reach a global customer base – however it means competition is fierce

The UK is an attractive place to do business
- The UK is ranked as the 9th most competitive country in the world by the World Economic Forum, scoring highly on ‘adopting technology to enhance productivity’
- In 2013, the UK had the 2nd greatest stock and flow of foreign direct investment (FDI) in the world, only second to the USA

We need a science and innovation strategy to help UK businesses of all sizes compete on a global playing field

Sources: WEF Survey – Global Competitiveness Report, 2014; The Cambridge Satchel Company
The structure of the UK is changing

We are becoming a knowledge economy

- A knowledge economy is driven by innovation and intellectual capital

Four key knowledge economy sectors for the UK have been identified as:
- Low Carbon
- Creative Industries
- Electronic manufacturing services
- Knowledge based business services

Academic education isn’t enough – we need skills

What skills are needed?

- Higher-skills
 - Over the next 3-5 years there will be an increase in employer demand for higher skills.
 - Changes to occupational structure mean that by 2020 nearly half of all employment will be for highly-skilled roles.
 - According to the Royal Society of Chemistry (RSC) in ten years the chemical using industries will require employees to be more highly skilled, and technologically literate to enable them to work more flexibly.

- Digital skills
 - The Science Council estimates that the ICT workforce alone will grow by 38% by 2030
 - The Future Digital Skills Needs of the UK Economy, Q2 2013 report, estimated that 745,000 additional workers with digital skills would be needed to meet rising demand from employers between 2013 and 2017.

Academic education isn’t enough – we need skills

Increased employer demand for higher skills over next 3-5 years, by sector (%)*

*Firms reporting increased demand minus those reporting decreased demand

Source: Royal Society of Chemistry; the Science Council; 2013 Q2 report, The Future Digital Skills Needs of the UK Economy
But it appears we have a shortage…

Faster growing organisations
- According to ‘The Skills Crunch’ report published by the Princes Trust two-thirds of business leaders believe that faster growth in their organisation will lead to a shortage of necessary skills.
- Fifty-nine per cent say that faster growth is already leading to skills shortages in the UK economy.

Digital skills
- Microsoft reported that there were 100,000 unfilled vacancies in partner companies across the UK last year.
- Gender imbalance in tech is extremely damaging.
- A recent survey by O2 found that 23% of parents believe digital skills to be irrelevant to their children’s future career success, despite the fact that almost all jobs already require at least a basic level of digital skills.

Longer and multiple careers
- The reality of longer and multiple careers over a lifetime means older individuals will have to re-skill and up-skill as technologies and ways of working change.
- Without continuing investment in their skills, individuals become much more vulnerable in the labour market and will not meet the high level skills demanded by organisations.

Upskilling is the answer – but how can this be achieved?

Vocational courses and apprenticeships
- ‘Learn-while-you-earn’ schemes can ensure work ready graduates.
- Countries that place greater value on vocational education report lower levels of youth unemployment.
- In Germany, more than half choose vocational routes. In Austria and the Netherlands, the figure is even higher, at 67% and 71% respectively. But in the UK it is just 32%.
- As part of an integrated training and development strategy, implementing an apprenticeship scheme is an ideal way for organisations to develop their talent pipelines.

Businesses need to take responsibility for the retraining of their staff
- Emphasis on the importance of personal development.
- Provide financing for external training courses.
- MOOCs as a way of developing skills.
- Tech skills for non techies.

Stress the importance of digital skills
- We must correct the gender imbalance in technology.
- We must start in schools – new ways of teaching.
- We need more post graduate computer science students.

7 Source: CBI on skills report: http://www.cbi.org.uk/media/2178879/tomorrows_growth.pdf
Is Scotland any different?

- High density of academic institutions
 - Scotland has five of the top 200 universities in the world
 - Globally, in fields such as biotechnology, optoelectronics, artificial intelligence, computing and many other disciplines, Scotland has a world class reputation.

- Fossil fuel industry
 - Capability to be a leader in the development of new technologies

- Scotland's legacy of scientific and medical research

- Early entrants into the field of informatics and data science
 - Research Assessment Exercises (RAE) results confirmed Edinburgh's position as the largest and best Informatics research centre in the UK
 - Informatics at Edinburgh delivers more world-leading (4*) research than anyone else in the UK

- Autonomy in education – perhaps easier to experiment with novel approaches

Source: http://www.bbc.co.uk/news/uk-scotland-24370331
Scotland offers innovation and entrepreneurship

- Vast number of spin out and new start-up companies
 - The University of Edinburgh is ranked 2nd in the UK in terms of volume of spin-out company formation.
 - Strathclyde was ranked 2nd in Scotland and 5th in the UK in terms of spin-out formation between 2003 and 2012.
 - The University of Dundee has now spun out over 25 companies, many of these reflecting strengths in life-sciences, medical device and engineering
 - With five universities in the top 10, Scotland was the best performing region

<table>
<thead>
<tr>
<th>New Spinouts</th>
<th>2011/12</th>
<th>2012/13</th>
<th>change</th>
</tr>
</thead>
<tbody>
<tr>
<td>England</td>
<td>125</td>
<td>101</td>
<td>-19%</td>
</tr>
<tr>
<td>Wales</td>
<td>17</td>
<td>15</td>
<td>-12%</td>
</tr>
<tr>
<td>Scotland</td>
<td>27</td>
<td>26</td>
<td>-4%</td>
</tr>
<tr>
<td>N Ireland</td>
<td>6</td>
<td>8</td>
<td>33%</td>
</tr>
<tr>
<td>Total</td>
<td>175</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New Start-ups</th>
<th>2011/12</th>
<th>2012/13</th>
<th>change</th>
</tr>
</thead>
<tbody>
<tr>
<td>England</td>
<td>2,415</td>
<td>1,146</td>
<td>-53%</td>
</tr>
<tr>
<td>Wales</td>
<td>256</td>
<td>246</td>
<td>-4%</td>
</tr>
<tr>
<td>Scotland</td>
<td>142</td>
<td>172</td>
<td>21%</td>
</tr>
<tr>
<td>N Ireland</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2,813</td>
<td>1,564</td>
<td></td>
</tr>
</tbody>
</table>

Scotland has the potential for growth

- Scotland has a strong life science sector
 - Scotland has one of the highest number of life science graduates per capita in Europe
 - For the last 20 years there has been a growing relationship between big pharmaceuticals and the biotech industry. This has reinforced the importance of academia in driving innovation in this space
 - Despite the lack of current investment, most investors acknowledge that there is still huge potential in the biotech and pharmaceutical market

<table>
<thead>
<tr>
<th>UK Distribution of Life Science Start-up Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>London/East/South East</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UK Distribution of Academic Life Science Research Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>London/East/South East</td>
</tr>
</tbody>
</table>

Sources:
Conclusion

A Successful Science and Innovation Strategy from a Business Perspective would include:

- A cradle to grave approach to skills and education
- A breaking down of the silos between business and academia
- A recognition that many non-STEM industries require many STEM skilled employees
- A way to bridge the capital gap from concept through to production
- An international strategy which acknowledges the global nature of STEM