

Imperial	College
London	

Analogies between Biological and Freight Transport

Transportation	Biology
Roads, Rail Infrastructure	Biochemical pathways; molecular interactions; nervous/lymphatic system
Ports, Stations, Transport Hubs	Cell/Membrane Receptors
Trucks, Trains, Ships	Molecules, Cells

Robustness of Evolved Systems

Biologically evolved systems tend to be robust in the sense that they are largely unaffected by random removal of nodes.

Technological systems have similar robustness properties (even when these were not necessarily designed to be robust).

Targeted removal of nodes can lead to quick collapse of biological systems.

The same is true for technological and transport networks.

Imperial College London

Similarities between Transport and Biological Networks

•The statistical and mathematical problems are often identical.

• Mathematical concepts can be applied across disciplines.

•The processes of learning about transport phenomena - such as flow through a road or metabolic network - are similar.

100

•Despite the similarities, there are significant differences and in any rigorous analysis details will matter.