

Chair of ENFSI methods, interpretation and analysis subgroup

Chair of ISFG DNA commission

Strathclyde University

peter.gill@strath.ac.uk

(note -views expressed are not endorsed by any organisation unless otherwise stated)

EC funded 'database exchange ENFSI project'

- Purpose is to facilitate exchange of data throughout Europe
- To carry out predictive analyses and to advise EU policy makers
- A multiplex has a life span of about fiveten years
- How do we manage continuous change?

• Analogy

- A hospital tests patients for cancer
- Sometimes the test gives a false positive
- Sometimes the test gives a false negative
- Which is the more serious?
- Both are undesirable but only one is lifethreatening

UK DNA database SGM plus							
year	2004	2005	2006	2007	2008	2009	
no on database	2765000	3265000	3765000	4265000	4765000	5265000	57
number of case stains	584000	634000	684000	734000	784000	834000	8
number of pairwise comparisons	1.615E+12	2.07E+12	2.58E+12	3.13E+12	3.74E+12	4.39E+12	5.
Probability of SGMplus random match (from simulation)	1.12E-12	1.12E-12	1.12E-12	1.12E-12	1.12E-12	1.12E-12	1.1
(Np=lambda) mean no of adventitious matches expected	2	2	3	4	4	5	
Probability of >=1 adventitious match	0.540	0.673	0.783	0.865	0.921	0.957	0
Probability of >=5 adventitious matches	0.011	0.031	0.073	0.143	0.244	0.369	0
Probability of >=10 adventitious matches	0.000	0.000	0.000	0.001	0.004	0.012	
This means that a very small number of adventitious matches may already be expected even with a multiplex where the Pm=10 ⁻¹² It is possible to predict the performance of a database in relation							
to the projected size of the d comparisons expected/	latabas	se and	d the r	numbe	er of		

Suppose we want to include whole of UK?

- Population size = 60 million
- Anticipate 1 million case stains by 2012
- Existing system is not powerful enough

Addressing false inclusions – what are the problems to introduce a new multiplex?

- Currently 7 European standard loci low discrimination
 This is because Europe is unfortunately act standardised on a sing
- This is because Europe is unfortunately not standardised on a single multiplex
 Need to increase by at least 3 and preferably by 5 new markers ('select committee recommendation')
- BUT will new multiplex systems actually be built??
- We are solely dependant upon commercial companies as the provider.
- Will companies invest when there is no guarantee of making a return?
- Why should a company with a monopoly invest?
- New multiplexes will be more expensive!
- Who will pay?
- Patents are preventing competition and encourage monopolies.
- Policies need to be converted into practical applications this requires coordination at several levels. There are scientific, commercial and sociopolitical issues to consider.

What about false exclusions? More difficult to evaluate

- Definition: where a suspect <u>is</u> on the NDNAD but fails to match a case sample
- More serious than a false positive noting that the database is an *intelligence* database.
- Is this possible?
- Yes we need to continually improve the robustness of our systems.
- We need to design systems according to agreed criteria what is the acceptable error rate?
- · This is definitely not one for the scientist

Some points for debate

•Courts require uniformity of process (keep scientific debate out of court)

•All labs need to provide similar answers to courts (given the profile) •A demonstration is needed that a given method is widely used and accepted by the forensic community

•How can this be achieved within the context of the *commercial ethos* where patents and trade secrets are important?

•Continuing education is a requirement – again *standardisation of interpretation and other methodology* is key.

•Is it desirable to know error rates of the NDNAD?

•What are the accepted levels $\underline{\operatorname{given}}$ that the error rate cannot be zero

•How do we coordinate development of the NDNAD to the next stage across commercial suppliers?