The antibody revolution: turning inventions into medicines and companies

Foundation Lecture, Royal Society
7 March 2011

Therapeutic antibodies today

Used for treatment of:

Cancer. Breast, bowel, head and neck cancer, bone, leukaemias (NHL, AML, CLL).

Immune disorders. Paroxysmal nocturnal haemoglobinuria (PNH), transplantation rejection, rheumatoid arthritis, osteoporosis, Crohn's disease, psoriasis, ankylosing spondylitis, asthma, multiple sclerosis.

Others. Acute macular degeneration
Infections. Respiratory syncytial virus.

Pharmaceuticals 2010

Brand name	Systematic name	${ }^{2}$ Sales (USD\$)
Lipitor	atorvastatin	10.7
(Lantus, Humulin)	insulins	9.7
Advair	fluticasone/salmeterol	7.9
${ }^{1}$ Enbrel	etanercept	6.8
${ }^{1}$ Humira	adalimumab	6.5
Avastin	bevacizumab	6.2
Rituxan	rituximab	6.1
${ }^{1}$ Remicade	infliximab	5.8
Crestor	rosuvastatin	5.7
Herceptin	trastuzumab	5.2

${ }^{1}$ anti-TNF mAbs. ${ }^{2}$ mAbs were $\$ 41$ bn market, CAGR $11 \%, 6$ mAbs in top 10 , each >\$USD 5 bn pa.

Cancer. Breast, bowel, head, neck and bone cancer, leukaemias (NHL, AML, CLL). Immune disorders.
PNH, transplantation rejection, rheumatoid arthritis, Crohn's disease, psoriasis, ankylosing spondylitis, asthma, multiple sclerosis. Others. Acute macular degeneration, osteoporosis. Viral infections. Respiratory syncytial virus.

Four chains, two heavy and two light; domain structure, variable and constant domains

Variable domains provide scaffold with Ag-binding loops

Mode of action of antibodies

Binds antigen. Variable domains bind antigen, blocking its action; may also lead to apoptosis of cells.

Long serum half-life (PK), Ab escapes filtration (150 kD) and pinocytosis (recycling FcRn).

Killing. The other end (Fc) acts as flag to the immune system leading to killing (Fc receptors on neutrophils, macrophages \& NK cells; serum C1q; TRIM21).

FcyR effector mechanisms

Campath-1H on non-Hodgkin lymphoma

Hale G., Dyer M.J., Clark M.R., Phillips J.M., Marcus R., Riechmann L., Winter G. \& Waldmann H. (1988). Remission induction in nonHodgkin lymphoma with reshaped human monoclonal antibody CAMPATH-1H. Lancet 2, (8625) 1394-1399.

Mode of action of therapeutic mAbs

Bevacizumab
(Avastin -Genentech/ Roche)

IgG1

Target: VEGF.
Treat: colorectal cancer

Blocking

Adalimumab

(Humira-Abbott)

IgG1
Target: TNF Treat: rheumatoid arthritis

Blocking>>killing

Trastuzumab
(Herceptin-Genentech/ Roche)

IgG1

Target: HER2 Treat: HER2+ breast cancer

Killing>> blocking

Denosumab

(Prolia-Amgen/GSK)

IgG2

Target: RankL
Treat: Osteoporosis

Blocking

Pharmaceutical drug classes

| | Antibodies | | Chemicals |
| :--- | :--- | :--- | :--- | :--- |
| | | | |
| | | | |
| High target affinity | | | |
| High target specificity | | | |
| Low off-target toxicity | | | |
| Blocks protein-protein | | | |
| Long serum half-life | | | |
| Killing mechanisms | | | |
| Access to small sites | | | |
| Extravascular targets | | | |
| Intracellular targets | | | |
| Oral route | | | |
| Immunogenicity | | | |

The ascent of Man

The ascent of the human therapeutic antibody

Rodent monoclonal antibodies

1975. Milstein and Kohler (MRC)

Immunize mice with antigen (Ag), fuse antibodyproducing cells from spleen (mortal) with myeloma cell line (immortal) to give a cell line hybridomas (immortal and produces a monoclonal antibody (mAb).

PLUS. Magic bullets: immunize mice with human tumours, find mAbs that kill Tu but not normal cells. MINUS. Poor killing activities in humans MINUS. Immunogenic, blocking of therapy /
 anaphylaxis with prolonged treatment.

Mouse-human chimaeric antibodies

1983. Cabilly

1984. Morrison and Oi.

Protein engineering; join mouse variable region genes (will bind Ag) to human constant region genes (will trigger human effector functions)

PLUS. 2/3 human and less immunogenic than rodent mAbs
PLUS. powerful human effector functions

Structure of antibodies

Four chains, two heavy and two light; domain structure, variable and constant domains

Variable domains provide scaffold with Ag-binding loops

Humanized antibodies

1986. Winter (MRC).

Protein engineering; transfer only the Ag-binding loops into human antibody

PLUS. Humanized mAbs 95\% human and less immunogenic than rodent mAbs
PLUS. Powerful human effector functions and killing.

Human antibodies - from repertoires

1989. Winter (MRC)/Lerner (Scripps).

Protein engineering; repertoires of human antibody genes/phage display to build human antibodies directly.

PLUS. Fully human antibodies

Human antibodies - reduction to practice

Human antibodies - from mice

1989. Neuberger/Bruggemann (MRC/AFRC).

Mouse engineering, transgenic mice with human antibody genes, then immunize and make hybridomas

PLUS. Fully human antibodies

Antibody technology

Human antibodies
(repertoire/phage) Winter \& Lerner 1989
(tg mouse) Neuberger \& Bruggeman 1989

Antibody products

Antibody technology - UK role

Antibody products - UK role

*Remicade; Kennedy Institute of Rheumatology> Centocor/J\&J
*Campath: Cambridge University/MRC-LMB > Wellcome Biotech >LeukoSite>
Millenium> Genzyme >Sanofi
Tysabri: MRCT > Biogen/IDEC
Cimzia: Celltech > UCB-Celltech
Actemra: MRCT > Chugai
Humira: CAT > Abbott
Benlysta: CAT > HGS [GSK]

Translation process

Patents
None
Single
Multiple
Improvements
Licensing strategy
Exclusive
Non-exclusive
Co-licensing
Rights to future IP
Commercial exploitation
Research collaboration
Development
Start-up
Biotech
Pharma
Outcomes
Research impact
Clinical impact
UK impact (companies/jobs)
Royalties
Sales

Translation process (MRC) - mouse mAbs

Patents

None
Single
Multiple
Improvements
Licensing strategy
Exclusive
Non-exclusive
Co-licensing
Rights to future IP
Commercial exploitation
Research collaboration
Development
X
Start-up
Biotech
Pharma
Outcomes
Research impact
Clinical impact
UK impact (companies/jobs)
Royalties
Sales
X

X

NRDC

Rat hybridomas/BTG
Rathybridomas/BTG

MRC/Celltech

Blood group reagents
Celltech
research reagents
diagnostic tests
Celltech, Unipath
>\$10 bn pa worldwide [2008]

Failure to patent mouse mAbs

Letter from NRDC to MRC

"It is certainly difficult for us to identify any immediate practical applications which could be pursued as a commercial venture...and it is not immediately obvious what patentable features are at present disclosed in the Nature paper"

Translation process (MRC) - mouse mAbs

Patents

None
Single
Multiple
Improvements
Licensing strategy
Exclusive
Non-exclusive
Co-licensing
Rights to future IP
Commercial exploitation
Research collaboration
Development
Start-up
Biotech
Pharma
Outcomes

Research impact	X	research reagents diagnostic tests
Clinical impact	X	Celltech, Unipath
UK impact (companies/jobs) Royalties	X	$>\$ 10$ bn pa worldwide [2008]
Sales	X	

Celltech

Blood group reagents
Celltech
>\$10 bn pa worldwide [2008]

Translation process (MRC) - humanised mAbs

Patent landscape late 1980s

Patents

1. H/L co-expression
2. Chimeric Abs
3. Humanised Abs

mAb

Humanised Ab

Patent landscape late 1980s

Translation process (MRC) - humanised mAbs

Patents	
None	
Single	X
Multiple	
Improvements	X
Licensing strategy	X
Exclusive	X
Non-exclusive	X
Co-licensing	
Rights to future IP	
Commercial exploitation	
Research collaboration	X
Development	X
Start-up	X
Biotech	X
Pharma	
Outcomes	X
Research impact	X
Clinical impact	X
UK impact (companies/jobs)	
Royalties	
Sales	

MRC Collaborative Centre

Antibody Diseases treated Company partners Patients treated Sales

Actemra (tocilizumab)
Rheumatoid arthritis
Chugai (Roche)
>100,000
US \$435M (2010)

Tysabri (natalizumab) MS, Crohn's disease Elan (Biogen-IDEC)
59,000
> US \$ 1000M

Translation process (MRC) - humanised mAbs

Translation process (MRC) - human mAbs

Start-up companies

CORE SCIENCE \& INTELLECTUAL PROPERTY (patents, know-how, licensing)

BUSINESS PLAN

(for deals, pipeline of preclinical \& clinical leads)

MONEY
(investors, deal income)

MANAGEMENT

(business and scientific)

Cambridge Antibody Technology

MRC Laboratory of Molecular Biology \& MRC Centre for Protein Engineering

CORE SCIENCE \& INTELLECTUAL PROPERTY
(patents, know-how, licensing)

MANAGEMENT
(business and scientific)

MONEY

 (investors, deal income)

Chiswell, Winter

Translation process (MRC) - human mAbs

Summary \& Comments

Translation

Work emerged from blue skies research
Three different models of translation, mostly successful
Long times lines to product
Biggest value for UK captured by working the technology in association with industry
No VCs
No interactions with UK large pharma
Public/private money used for translation.

