The antibody revolution: turning inventions into medicines and companies

Foundation Lecture, Royal Society 7 March 2011

Therapeutic antibodies today

Used for treatment of:

Cancer. Breast, bowel, head and neck cancer, bone, leukaemias (NHL, AML, CLL).

Immune disorders. Paroxysmal nocturnal haemoglobinuria (PNH), transplantation rejection, rheumatoid arthritis, osteoporosis, Crohn's disease, psoriasis, ankylosing spondylitis, asthma, multiple sclerosis.

Others. Acute macular degeneration

Infections. Respiratory syncytial virus.

Pharmaceuticals 2010

Brand name	Systematic name	² Sales (USD\$)
Lipitor	atorva <u>statin</u>	10.7
(Lantus, Humulin)	insulins	9.7
Àdvair	fluticasone/salmeterol	7.9
¹ Enbrel	etanercept	6.8
¹Humira	adalimumab	6.5
Avastin	bevacizumab	6.2
Rituxan	rituximab	6.1
¹ Remicade	infliximab	5.8
Crestor	rosuva <u>statin</u>	5.7
Herceptin	trastuzumab	5.2

¹anti-TNF mAbs. ²mAbs were \$41 bn market, CAGR 11%, 6 mAbs in top 10, each >\$USD 5 bn pa.

Cancer. Breast, bowel, head, neck and bone cancer, leukaemias (NHL, AML, CLL). **Immune disorders**. PNH, transplantation rejection, rheumatoid arthritis, Crohn's disease, psoriasis, ankylosing spondylitis, asthma, multiple sclerosis. **Others**. Acute macular degeneration, osteoporosis. **Viral infections**. Respiratory syncytial virus.

Structure of antibodies

Four chains, two heavy and two light; domain structure, variable and constant domains

Variable domains provide scaffold with Ag-binding loops

Mode of action of antibodies

Binds antigen. Variable domains bind antigen, blocking its action; may also lead to apoptosis of cells.

Long serum half-life (PK), Ab escapes filtration (150 kD) and pinocytosis (recycling FcRn).

Killing. The other end (Fc) acts as flag to the immune system leading to killing (Fc receptors on neutrophils, macrophages & NK cells; serum C1q; TRIM21).

FcyR effector mechanisms

Campath-1H on non-Hodgkin lymphoma

Hale G., Dyer M.J., Clark M.R., Phillips J.M., Marcus R., Riechmann L., Winter G. & Waldmann H. (1988). Remission induction in non-Hodgkin lymphoma with reshaped human monoclonal antibody CAMPATH-1H. *Lancet* 2, (8625) 1394-1399.

Mode of action of therapeutic mAbs

Bevacizumab (Avastin –Genentech/Roche)

IgG1 Target: VEGF. Treat: colorectal cancer

Blocking

Adalimumab (Humira-Abbott)

IgG1 Target: TNF Treat: rheumatoid arthritis

Blocking>>killing

Trastuzumab (Herceptin-Genentech/Roche)

IgG1 Target: HER2 Treat: HER2+ breast cancer

Killing>> blocking

Denosumab (Prolia-Amgen/GSK)

IgG2

Target: RankL Treat: Osteoporosis

Blocking

Pharmaceutical drug classes

High target affinity		
High target specificity		
Low off-target toxicity		
Blocks protein-protein		
Long serum half-life		
Killing mechanisms		
Access to small sites		
Extravascular targets		
Intracellular targets		
Oral route		
Immunogenicity		

Antibodies	Chemicals
	High target affinity
	High target specificity
	Low toxicity
	Blocks protein-protein
	Long serum half-life
	Effector mechanisms
Access to small sites	
Extravascular targets	
Intracellular targets	
Oral route	
immunogenic	

The ascent of Man

The ascent of the human therapeutic antibody

Rodent monoclonal antibodies

1975. Milstein and Kohler (MRC)

Immunize mice with antigen (Ag), fuse antibodyproducing cells from spleen (mortal) with myeloma cell line (immortal) to give a cell line hybridomas (immortal and produces a monoclonal antibody (mAb).

PLUS. Magic bullets: immunize mice with human tumours, find mAbs that kill Tu but not normal cells. **MINUS.** Poor killing activities in humans **MINUS.** Immunogenic, blocking of therapy / anaphylaxis with prolonged treatment.

Mouse-human chimaeric antibodies

1983. Cabilly 1984. Morrison and Oi.

Protein engineering; join mouse variable region genes (will bind Ag) to human constant region genes (will trigger human effector functions)

PLUS. 2/3 human and less immunogenic than rodent mAbs

PLUS. powerful human effector functions

Structure of antibodies

Four chains, two heavy and two light; domain structure, variable and constant domains

Variable domains provide scaffold with Ag-binding loops

Humanized antibodies

1986. Winter (MRC).

Protein engineering; transfer only the Ag-binding loops into human antibody

PLUS. Humanized mAbs 95% human and less immunogenic than rodent mAbs **PLUS.** Powerful human effector functions and killing.

Human antibodies – from repertoires

1989. Winter (MRC)/Lerner (Scripps).

Protein engineering; repertoires of human antibody genes/phage display to build human antibodies directly.

PLUS. Fully human antibodies

Human antibodies – reduction to practice

Human antibodies - from mice

1989. Neuberger/Bruggemann (MRC/AFRC).

Mouse engineering, transgenic mice with human antibody genes, then immunize and make hybridomas.

PLUS. Fully human antibodies

Antibody technology

Antibody products

Antibody technology - UK role

Antibody products - UK role

*Remicade; Kennedy Institute of Rheumatology> Centocor/J&J

*Campath: Cambridge University/MRC-LMB > Wellcome Biotech > LeukoSite>

Millenium> Genzyme >Sanofi
Tysabri: MRCT > Biogen/IDEC
Cimzia: Celltech > UCB-Celltech
Actemra: MRCT > Chugai
Humira: CAT > Abbott
Benlysta: CAT > HGS [GSK]

Translation process

Patents

None

Single

Multiple

Improvements

Licensing strategy

Exclusive

Non-exclusive

Co-licensing

Rights to future IP

Commercial exploitation

Research collaboration

Development

Start-up

Biotech

Pharma

Outcomes

Research impact

Clinical impact

UK impact (companies/jobs)

Royalties

Sales

Translation process (MRC) - mouse mAbs

Patents
None X NRDC
Single

Multiple

Improvements X Rat hybridomas/BTG

Licensing strategy

Exclusive Non-exclusive Co-licensing

Rights to future IP X MRC/Celltech

Commercial exploitation

Research collaboration

Development X Blood group reagents

Start-up

Biotech X Celltech

Pharma

OutcomesResearch impactXresearch reagentsClinical impactXdiagnostic testsUK impact (companies/jobs)XCelltech, Unipath

Royalties

Sales X >\$10 bn pa worldwide [2008]

Failure to patent mouse mAbs

Letter from NRDC to MRC

"It is certainly difficult for us to identify any immediate practical applications which could be pursued as a commercial venture...and it is not immediately obvious what patentable features are at present disclosed in the Nature paper"

Translation process (MRC) - mouse mAbs

Patents		
None	X	NRDC
Single		
Multiple		
Improvements	X	Rat hybridomas/NRDC
Licensing strategy Exclusive		
Non-exclusive		
Co-licensing		
Rights to future IP	Χ	Celltech
Commercial exploitation		
Research collaboration		
Development	Χ	Blood group reagents
Start-up		
Biotech	X	Celltech
Pharma		
Outcomes		
Research impact	X	research reagents
Clinical impact	X	diagnostic tests
UK impact (companies/jobs) Royalties	X	Celltech, Unipath
Sales	Χ	>\$10 bn pa worldwide [2008]

Translation process (MRC) - humanised mAbs

Patents None Χ Single Multiple Improvements Χ Licensing strategy Χ TNF exclusive to Celltech Exclusive Non-exclusive Χ >40 companies licensed Χ with key patent from Celltech Co-licensing Rights to future IP **Commercial exploitation** Research collaboration Celltech, Behringwerke Χ Development MRCC [Chugai, Elan, LeukoSite] Start-up Χ Scotgen, Protein Design Laboratories Χ Celltech, Genentech Biotech Χ Pharma Wellcome **Outcomes** Research impact Clinical impact several diseases UK impact (companies/jobs) Celltech Royalties Χ >\$500M Sales >\$20 bn pa worldwide [2010]

Patent landscape late 1980s

Patent landscape late 1980s

Translation process (MRC) - humanised mAbs

Patents None		nie.
Single	Χ	
Multiple		
Improvements	X	
Licensing strategy		
Exclusive	Χ	TNF exclusive to Celltech
Non-exclusive	Χ	>40 companies licensed
Co-licensing	Χ	with key patent from Celltech
Rights to future IP		
Commercial exploitation		
Research collaboration	Χ	Celltech, Behringwerke
Development	Χ	MRCC [Chugai, Elan, LeukoSite]
Start-up	Χ	Scotgen, Protein Design Laboratories
Biotech	Χ	Celltech, Genentech
Pharma	Χ	Wellcome
Outcomes		
Research impact		
Clinical impact	Χ	several diseases
UK impact (companies/jobs)	Χ	Celltech
Royalties	Χ	>\$500M
Sales	X	>\$20 bn pa worldwide [2010]

MRC Collaborative Centre

Antibody
Diseases treated
Company partners
Patients treated
Sales

Actemra (tocilizumab) Rheumatoid arthritis Chugai (Roche) >100,000 US \$435M (2010) Tysabri (natalizumab) MS, Crohn's disease Elan (Biogen-IDEC) 59,000 > US \$ 1000M

Translation process (MRC) - humanised mAbs

Patents

None
Single X
Multiple
Improvements X
Licensing strategy
Exclusive X

Licensing strategyExclusiveXTNF exclusive to CelltechNon-exclusiveX>40 companies licensedCo-licensingXwith key patent from CelltechRights to future IP

Commercial exploitation

Research collaboration X Celltech, Behringwerke

Development X MRCC [Chugai, Elan, LeukoSite]
Start-up X Scotgen, Protein Design Laboratories
Biotech X Celltech, Genentech

Pharma X Wellcome

Outcomes

Research impact
Clinical impact X several diseases

UK impact (companies/jobs) X Celltech Royalties X >\$500M

Sales X >\$20 bn pa worldwide [2010]

Translation process (MRC) - human mAbs

Patents

None Single Multiple Χ Χ Improvements

Licensing strategy

CAT Χ Exclusive

Non-exclusive

Χ MRC/CAT/Scripps Co-licensing

Χ Rights to future IP

Commercial exploitation

Research collaboration Χ CAT

Development

Start-up Χ CAT (HGS, BASF, Abbott, Pfizer, Genentech)

Biotech

Pharma

Outcomes

Research impact Clinical impact

CORE SCIENCE &

INTELLECTUAL PROPERTY

several diseases UK impact (companies/jobs) Χ GSK, Astrazeneca

Royalties Χ >\$250M

Sales Χ >\$6 bn worldwide [2010]

Start-up companies

BUSINESS PLAN

(for deals, pipeline of preclinical & clinical leads)

MONEY

MANAGEMENT

(business and scientific)

Cambridge Antibody Technology

BUSINESS PLAN

(for deals, pipeline of preclinical & clinical leads)

MRC Laboratory of Molecular Biology & MRC Centre for Protein Engineering

CORE SCIENCE & INTELLECTUAL PROPERTY (patents, know-how, licensing)

Ca T

Cambridge Antibody Technology

(investors, deal income)

MONEY

MANAGEMENT (business and scientific)

Chiswell, Winter

Translation process (MRC) - human mAbs

Patents

None
Single X
Multiple X
Improvements X

Licensing strategy

Exclusive X CAT

Non-exclusive

Co-licensing X MRC/CAT/Scripps

Rights to future IP X

Commercial exploitation

Research collaboration X CAT

Development

Start-up X CAT (HGS, BASF, Abbott, Pfizer, Genentech)

Biotech Pharma

Outcomes

Research impact

Clinical impact X several diseases UK impact (companies/jobs) X GSK, Astrazeneca

Royalties X >\$250M

Sales X >\$6 bn worldwide [2010]

Summary & Comments

Translation

Work emerged from blue skies research

Three different models of translation, mostly successful

Long times lines to product

Biggest value for UK captured by working the technology in association with industry

No VCs

No interactions with UK large pharma

Public/private money used for translation.